Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 169779, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38181947

RESUMO

Aerosols are potential supplier of nutrients to the surface water of oceans and can impact biogeochemical processes particularly in the remote locations. The nutrient data from atmospheric supply is poorly reported from the Indian Ocean region. In this study, we present atmospheric nutrients such as reactive nitrogen species (Nitrate, Ammonium, Organic nitrogen), micro-nutrients (e.g. Fe, Mn and Cu) concentration along with mineral dust in the aerosol samples collected over meridional transect during summer (April-May 2018) and monsoon (June-July 2019) months. A significant spatial variation of dust was observed during summer (0.6-22.8 µg m-3) and monsoon (2.8-25.1 µg m-3) months with a decreasing trend from north to south. Dust as well as other nutrient species shows a general north to south decreasing trend, however, no such trend was seen in the soluble trace elements (TEs) concentration. Anthropogenic species like NH4+ and nss-K+ were found below detection limit during monsoon campaign. The fractional solubility (in percentage) of Fe, Mn and Cu were estimated by measuring their concentration in ultrapure water leach which averaged around 0.99 ± 1.12, 31.0 ± 14.9 and 31.1 ± 25.4, respectively during summer and 0.09 ± 0.08, 6.0 ± 8.9, 16.7 ± 9.6, respectively, during monsoon period. Correlation of soluble Fe with total Fe and total acidic species suggest varying dust sources is an important controlling factor for the fraction solubility of Fe with negligible contribution from the chemical processing. However, a significant correlation was observed between total acid and fractional solubility of Mn and Cu suggest role of chemical processing in enhancement of their solubility. Dry deposition flux of aeolian dust was estimated for both campaign using Al concentration and relatively higher fluxes were observed for summer (12.6 ± 8.4 mg·m-2·d-1) and monsoon (8.7 ± 8.4 mg·m-2·d-1) months as compared to model based estimates reported in the literature. Contrastingly, estimated deposition flux of soluble Fe from both campaign displays relatively lower values as compared to model based results which underscores a need for re-evaluation of biogeochemical models with real-time data.

2.
Environ Sci Process Impacts ; 24(1): 72-88, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34897330

RESUMO

The marine atmosphere of the Bay of Bengal (BoB) is prone to get impacted by anthropogenic aerosols from the Indo-Gangetic Plain (IGP) and Southeast Asia (SEA), particularly during the northeast monsoon (NEM). In this study, we quantify and characterize carbonaceous aerosols and their absorption properties collected in two cruise campaigns onboard ORV Sindhu Sadhana during the continental outflow period over the BoB. Aerosol samples were classified based on the air mass back trajectory analyses, wherein samples were impacted by the continental air parcel (CAP), marine air parcel (MAP), and mix of both (CAP + MAP). Significant variability in the PM10 mass concentration (in µg m-3) is found with a maximum value for MAP samples (75.5 ± 36.4) followed by CAP + MAP (58.5 ± 27.3) and CAP (58.5 ± 27.3). The OC/EC ratio (>2) and diagnostic tracers i.e. nss-K+/EC (0.2-0.96) and nss-K+/OC (0.11-1.32) along with the absorption angstrom exponent (AAE: 4.31-6.02) and MODIS (Moderate Resolution Imaging Spectroradiometer) derived fire counts suggest the dominance of biomass burning emission sources. A positive correlation between OC and EC (i.e. r = 0.86, 0.70, and 0.42 for CAP, MAP, and CAP + MAP, respectively) further confirmed the similar emission sources of carbonaceous species. Similarly, a significant correlation between estimated secondary organic carbon (SOC) and water-soluble organic carbon (WSOC; r = 0.99, 0.96, and 0.97 for CAP, MAP, and CAP + MAP, respectively) indicate their similar chemical nature as well as dominant contribution of SOC to WSOC. The absorption coefficient (babs-365) and mass absorption efficiency (MAEBrC-365) of the soluble fraction were estimated at 365 nm wherein, babs-365 showed a linear relationship with WSOC and nss-K+, signifying the contribution of water soluble brown carbon from biomass burning emissions. The estimated MAEBrC-365 (0.30-0.93 m2 g-1), during this study, was consistent with the earlier observations over the BoB, particularly during the continental outflow season.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Baías , Biomassa , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...